Inertial sensors technologies for navigation applications: state of the art and future trends

Author:

El-Sheimy NaserORCID,Youssef AhmedORCID

Abstract

AbstractInertial navigation represents a unique method of navigation, in which there is no dependency on external sources of information. As opposed to other position fixing navigation techniques, inertial navigation performs the navigation in a relative sense with respect to the initial navigation state of the moving platform. Hence, inertial navigation systems are not prone to jamming, or spoofing. Inertial navigation systems have developed vastly, from their occurrence in the 1940s up to date. The accuracy of the inertial sensors has improved over time, making inertial sensors sufficient in terms of size, weight, cost, and accuracy for navigation and guidance applications. Within the past few years, inertial sensors have developed from being purely mechanical into incorporating various technologies and taking advantage of numerous physical phenomena, from which the dynamic forces exerted on a moving body could be computed accurately. Besides, the evolution of inertial navigation scheme involved the evolution from stable-platform inertial navigation system, which were mechanically complicated, to computationally demanding strap-down inertial navigation systems. Optical sensory technologies have provided highly accurate inertial sensors, at smaller sizes. Besides, the vibratory inertial navigation technologies enabled the production of Micro-electro-machined inertial sensors that are extremely low-cost, and offer extremely low size, weight and power consumption, making them suitable for a wide range of day-to-day navigation applications. Recently, advanced inertial sensor technologies have been introduced to the industry such as nuclear magnetic resonance technology, cold-atom technology, and the re-introduction of fluid-based inertial sensors. On another note, inertial sensor errors constitute a huge research aspect in which it is intended for inertial sensors to reach level in which they could operate for substantially long operation times in the absence of updates from aiding sensors, which would be a huge leap. Inertial sensors error modeling techniques have been developing rapidly trying to ensure higher levels of navigation accuracy using lower-cost inertial sensors. In this review, the inertial sensor technologies are covered extensively, along the future trends in the inertial sensors’ technologies. Besides, this review covers a brief overview on the inertial error modeling techniques used to enhance the performance of low-cost sensors.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3