Affiliation:
1. Heidelberg University
2. Université catholique de Louvain
3. Sorbonne University
4. Fermi National Accelerator Laboratory
5. University of Bologna
Abstract
Theory predictions for the LHC require precise numerical phase-space integration and generation of unweighted events. We combine machine-learned multi-channel weights with a normalizing flow for importance sampling, to improve classical methods for numerical integration. We develop an efficient bi-directional setup based on an invertible network, combining online and buffered training for potentially expensive integrands. We illustrate our method for the Drell-Yan process with an additional narrow resonance.
Funder
Baden-Württemberg Stiftung
Bundesministerium für Bildung und Forschung
Carl-Zeiss-Stiftung
Deutsche Forschungsgemeinschaft
Fermilab
Fonds De La Recherche Scientifique - FNRS
United States Department of Energy
Université Catholique de Louvain
Waalse Gewest
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献