MadNIS - Neural multi-channel importance sampling

Author:

Heimel Theo1,Winterhalder Ramon2,Butter Anja13,Isaacson Joshua4,Krause Claudius1,Maltoni Fabio25,Mattelaer Olivier2,Plehn Tilman1

Affiliation:

1. Heidelberg University

2. Université catholique de Louvain

3. Sorbonne University

4. Fermi National Accelerator Laboratory

5. University of Bologna

Abstract

Theory predictions for the LHC require precise numerical phase-space integration and generation of unweighted events. We combine machine-learned multi-channel weights with a normalizing flow for importance sampling, to improve classical methods for numerical integration. We develop an efficient bi-directional setup based on an invertible network, combining online and buffered training for potentially expensive integrands. We illustrate our method for the Drell-Yan process with an additional narrow resonance.

Funder

Baden-Württemberg Stiftung

Bundesministerium für Bildung und Forschung

Carl-Zeiss-Stiftung

Deutsche Forschungsgemeinschaft

Fermilab

Fonds De La Recherche Scientifique - FNRS

United States Department of Energy

Université Catholique de Louvain

Waalse Gewest

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3