Machine learning and LHC event generation

Author:

Butter Anja12,Plehn Tilman1,Schumann Steffen3,Badger Simon4,Caron Sascha56,Cranmer Kyle7,Di Bello Francesco Armando8,Dreyer Etienne9,Forte Stefano10,Ganguly Sanmay11,Gonçalves Dorival12,Gross Eilam9,Heimel Theo1,Heinrich Gudrun13,Heinrich Lukas14,Held Alexander7,Höche Stefan15,Howard Jessica N.16,Ilten Philip17,Isaacson Joshua15,Janßen Timo3,Jones Stephen18,Kado Marumi198,Kagan Michael20,Kasieczka Gregor21,Kling Felix22,Kraml Sabine23,Krause Claudius24,Krauss Frank18,Kröninger Kevin25,Barman Rahool Kumar12,Luchmann Michel1,Magerya Vitaly13,Maitre Daniel18,Malaescu Bogdan2,Maltoni Fabio2627,Martini Till28,Mattelaer Olivier26,Nachman Benjamin2930,Pitz Sebastian1,Rojo Juan531,Schwartz Matthew32,Shih David23,Siegert Frank33,Stegeman Roy10,Stienen Bob6,Thaler Jesse34,Verheyen Rob35,Whiteson Daniel16,Winterhalder Ramon26,Zupan Jure17

Affiliation:

1. Heidelberg Institute for Theoretical Studies

2. Sorbonne University

3. University of Göttingen

4. University of Turin

5. National Institute for Subatomic Physics

6. Radboud University Nijmegen

7. New York University

8. Sapienza University of Rome

9. Weizmann Institute of Science

10. University of Milan

11. University of Tokyo

12. Oklahoma State University

13. Karlsruhe Institute of Technology

14. Technical University of Munich

15. Fermi National Accelerator Laboratory

16. University of California, Irvine

17. University of Cincinnati

18. Durham University

19. University of Paris-Saclay

20. SLAC National Accelerator Laboratory

21. University of Hamburg

22. Deutsche Elektronen-Synchrotron DESY

23. French National Centre for Scientific Research

24. Rutgers University

25. TU Dortmund University

26. Université catholique de Louvain

27. University of Bologna

28. Humboldt University of Berlin

29. Lawrence Berkeley National Laboratory

30. University of California, Berkeley

31. VU University Amsterdam

32. Harvard University

33. Dresden University of Technology

34. Massachusetts Institute of Technology

35. University College London

Abstract

First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.

Funder

Agence Nationale de la Recherche

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

European Research Council

Fonds De La Recherche Scientifique - FNRS

Institut National de Physique Nucléaire et de Physique des Particules

National Science Foundation

United States Department of Energy

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3