Accelerating Monte Carlo event generation -- rejection sampling using neural network event-weight estimates

Author:

Danziger Katharina1,Janßen Timo2,Schumann Steffen2,Siegert Frank1

Affiliation:

1. Dresden University of Technology

2. University of Göttingen

Abstract

The generation of unit-weight events for complex scattering processes presents a severe challenge to modern Monte Carlo event generators. Even when using sophisticated phase-space sampling techniques adapted to the underlying transition matrix elements, the efficiency for generating unit-weight events from weighted samples can become a limiting factor in practical applications. Here we present a novel two-staged unweighting procedure that makes use of a neural-network surrogate for the full event weight. The algorithm can significantly accelerate the unweighting process, while it still guarantees unbiased sampling from the correct target distribution. We apply, validate and benchmark the new approach in high-multiplicity LHC production processes, including Z/WZ/W+4~jets and t\bar{t}tt+3~jets, where we find speed-up factors up to ten.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Fulbright Association

Horizon 2020

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3