Affiliation:
1. Institute of Photonic Sciences
2. Institute of Physics, University of Amsterdam
3. Institució Catalana de Recerca i Estudis Avançats
Abstract
We demonstrate how to map out the phase diagram of a two dimensional quantum many body system with no prior physical knowledge by applying deep anomaly detection to ground states from infinite projected entangled pair state simulations. As a benchmark, the phase diagram of the 2D frustrated bilayer Heisenberg model is analyzed, which exhibits a second-order and two first-order quantum phase transitions. We show that in order to get a good qualitative picture of the transition lines, it suffices to use data from the cost-efficient simple update optimization. Results are further improved by post-selecting ground-states based on their energy at the cost of contracting the tensor network once. Moreover, we show that the mantra of ``more training data leads to better results'' is not true for the learning task at hand and that, in principle, one training example suffices for this learning task. This puts the necessity of neural network optimizations for these learning tasks in question and we show that, at least for the model and data at hand, a simple geometric analysis suffices.
Funder
Agencia Estatal de Investigación
European Commission
European Research Council
Generalitat de Catalunya
Horizon 2020
Ministerio de Economía y Competitividad
Narodowe Centrum Nauki
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献