Provably efficient machine learning for quantum many-body problems

Author:

Huang Hsin-Yuan1ORCID,Kueng Richard2ORCID,Torlai Giacomo3ORCID,Albert Victor V.4ORCID,Preskill John13ORCID

Affiliation:

1. Institute for Quantum Information and Matter and Department of Computing and Mathematical Sciences, Caltech, Pasadena, CA, USA.

2. Institute for Integrated Circuits, Johannes Kepler University, Linz, Austria.

3. AWS Center for Quantum Computing, Pasadena, CA, USA.

4. Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology and University of Maryland, College Park, MD, USA.

Abstract

Classical machine learning (ML) provides a potentially powerful approach to solving challenging quantum many-body problems in physics and chemistry. However, the advantages of ML over traditional methods have not been firmly established. In this work, we prove that classical ML algorithms can efficiently predict ground-state properties of gapped Hamiltonians after learning from other Hamiltonians in the same quantum phase of matter. By contrast, under a widely accepted conjecture, classical algorithms that do not learn from data cannot achieve the same guarantee. We also prove that classical ML algorithms can efficiently classify a wide range of quantum phases. Extensive numerical experiments corroborate our theoretical results in a variety of scenarios, including Rydberg atom systems, two-dimensional random Heisenberg models, symmetry-protected topological phases, and topologically ordered phases.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3