Affiliation:
1. KU Leuven
2. Academy of Sciences of the Czech Republic
Abstract
We provide the theoretical basis of calorimetry for a class of active particles subject to thermal noise. Simulating AC-calorimetry, we numerically evaluate the heat capacity of run-and-tumble particles in double-well and in periodic potentials, and of systems with a flashing potential. Low-temperature Schottky-like peaks show the role of activity and indicate shape transitions, while regimes of negative heat capacity appear at higher propulsion speeds. From there, a significant increase in heat capacities of active systems may be inferred at low temperatures, as well as the possibility of diagnostic tools for the activity of self-motile artificial or biomimetic systems based on heat capacity measurements.
Subject
General Physics and Astronomy
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献