Heat Production and Growth Kinetics of E. coli K12 from Flow Calorimetric Measurements on Chemostat Cultures

Author:

Leiseifer H. P.1

Affiliation:

1. Abteilung Biophysikalische Chemie — ICH. Kernforschungsanlage Jülich GmbH, Postfach 1913, D-5170 Jülich 1, Bundesrepublik Deutschland

Abstract

The heat production of E. coli K12 growing aerobically in glucose limited chemostat cultures is determined in the range of specific growth rates μ ( = dilution rates D) from 0,058 h-1 to 0.852 h-1 for two different glucose concentrations Se in the instream of the chemostat. namely Se1=0.3182 g·1-1 and Se2 = 0.6364 g·1-1. Heat production Q and biomass production P per unit of culture volume show well correlated patterns for Se1 and Se2. For Se1 the highest value Q actually measured is 443-10-3 W·1-1 at D = 0.74 h-1 with P = 0.068 g·1-1·h-1 and for Se2 593·10-3 W·1-1 at D = 0.497 h-1 with P = 0.108 g·1-1·h-1. Heat production QB per unit of biomass appears to be independent of Se at least up to D - 0.5 h-1.At higher D there is strong indication that QB possesses a real maximum. The highest value of QB actually measured is 4.8 W·g-1 at D = 0.74 h-1. For Se1 and Se2 there were significantly higher specific growth rates verified in chemostat culture than μmax Batch= 0.717 h-1 which is the maximum specific growth rate in comparable, unlimited batch cultures. The real maximum of QB is estimated to be in the vicinity of μmax Batch. This suggests the hypothesis of a maximum principle for the growth in batch culture. For Se1 a closed analytical expression is derived for the relationship between μ and the substrate concentration S. μ[S] features a S-shaped characteristic with μmax Chemostat= 0.905 h-1; 1/2 μmax Chemostat is reached at S = 2.85·10-3 g·1-1. Three basic parameters which characterize the overall metabolism of the cells, namely the heat released per unit of substrate consumed, (Qs, the effective yield of biomass, Yeff, and μmax Chemostat are identified to depend on Se.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3