The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider

Author:

Aarrestad Thea1,van Beekveld Melissa2,Bona Marcella3,Boveia Antonio4,Caron Sascha5,Davies Joe3,de Simone Andrea67,Doglioni Caterina8,Duarte Javier9,Farbin Amir10,Gupta Honey11,Hendriks Luc5,Heinrich Lukas A.1,Howarth James12,Jawahar Pratik113,Jueid Adil14,Lastow Jessica8,Leinweber Adam15,Mamuzic Judita16,Merényi Erzsébet17,Morandini Alessandro18,Moskvitina Polina5,Nellist Clara5,Ngadiuba Jennifer1920,Ostdiek Bryan2122,Pierini Maurizio1,Ravina Baptiste12,Ruiz de Austri Roberto16,Sekmen Sezen23,Touranakou Mary124,Vaškeviciute Marija12,Vilalta Ricardo25,Vlimant Jean-Roch19,Verheyen Rob26,White Martin15,Wulff Eric8,Wallin Erik8,Wozniak Kinga A.271,Zhang Zhongyi5

Affiliation:

1. European Organization for Nuclear Research

2. Rudolf Peierls Centre for Theoretical Physics, University of Oxford

3. Queen Mary University of London

4. The Ohio State University

5. National Institute for Subatomic Physics

6. International School for Advanced Studies

7. National Institute for Nuclear Physics

8. Lund University

9. University of California, San Diego

10. The University of Texas at Arlington

11. Google

12. University of Glasgow

13. Worcester Polytechnic Institute

14. Konkuk University

15. University of Adelaide

16. Institute for Corpuscular Physics

17. Rice University

18. RWTH Aachen University

19. California Institute of Technology

20. Fermi National Accelerator Laboratory

21. Harvard University

22. The NSF AI Institute for Artificial Intelligence and Fundamental Interactions

23. Kyungpook National University

24. National and Kapodistrian University of Athens

25. University of Houston

26. University College London

27. University of Vienna

Abstract

We describe the outcome of a data challenge conducted as part of the Dark Machines (https://www.darkmachines.org) initiative and the Les Houches 2019 workshop on Physics at TeV colliders. The challenged aims to detect signals of new physics at the Large Hadron Collider (LHC) using unsupervised machine learning algorithms. First, we propose how an anomaly score could be implemented to define model-independent signal regions in LHC searches. We define and describe a large benchmark dataset, consisting of >1 billion simulated LHC events corresponding to 10\, fb^{-1}10fb1 of proton-proton collisions at a center-of-mass energy of 13 TeV. We then review a wide range of anomaly detection and density estimation algorithms, developed in the context of the data challenge, and we measure their performance in a set of realistic analysis environments. We draw a number of useful conclusions that will aid the development of unsupervised new physics searches during the third run of the LHC, and provide our benchmark dataset for future studies at https://www.phenoMLdata.org. Code to reproduce the analysis is provided at https://github.com/bostdiek/DarkMachines-UnsupervisedChallenge.

Funder

Australian Research Council

European Commission

European Research Council

Generalitat Valenciana

Ministerio de Ciencia e Innovación

National Research Foundation of Korea

National Science Foundation

Royal Society

Science and Technology Facilities Council

United States Department of Energy

Vetenskapsrådet

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3