Effect of γ-Irradiation on Structure and Electrophysical Properties of S-Doped ZnO Films

Author:

Zainabidinov Sirajidin S.ORCID,Boboev Akramjon Y.ORCID,Yunusaliyev Nuritdin Y.ORCID

Abstract

The produced ZnO<S> films were characterized with the crystallographic orientation (001) and lattice parameters a = b = 0.3265 nm and c = 0.5212 nm. ZnO1—хSх nano-crystallites on the surface of the film had characteristic sizes ranging from 50 nm to 200 nm. The lattice parameter of ZnO1—хSх nano-crystallites was experimentally determined to be aZnO<S>= 0.7598 nm. The study has shed light on what occurs to lattice parameters of the ZnO film and the geometric dimensions of ZnO1—хSх nano-crystallites on the surface of the film under the influence of gamma-irradiation. It has been determined that the crystal structure of ZnO1—хSх nanocrystallites represents a cubic lattice and belongs to the space group F43m. It has been determined that after γ-irradiation at doses 5∙106 rad, the resistivity of ZnO<S> films reduced to ρ = 12,7 W∙cm and the mobility of the majority charge carriers (µ) became 0.18 cm2/V∙s, whereas their concentration (N) had increased and equaled 2.64∙1018 cm-3. The study of the current-voltage characteristics of p- ZnO<S>/n-Si heterostructures before and after γ‑irradiation at doses of 5∙106 rad revealed that the dependence of the current on voltage obeys an exponential law which is consistent with the theory of the injection depletion phenomenon. It was determined that under the influence of γ-irradiation at doses of 5∙106 rad, the capacitance of the p-ZnO<S>/n-Si heterostructure at negative voltages increases and the shelved curve sections and peaks are observed on the curve due to the presence of a monoenergetic level of fast surface states at the heterojunction.

Publisher

V. N. Karazin Kharkiv National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3