Abstract
This study examines how thermal stratification affect the movement of a fluid in presence of first order chemical reaction past an infinite vertical plate. To solve the non-dimensional governing equations in closed form for Pr = 1, the Laplace’s transform system is applied. Significant findings resulting from stratification are compared to the case of no stratification. The effects of many parameters, including S, K, Gr, Gc, Sc and time on velocity, temperature, concentration, skin friction, Nusselt number, and Sherwood number are explored and graphically displayed. It is shown that the steady state is attained at shorter times as a result of the application of stratification on the flow.
Publisher
V. N. Karazin Kharkiv National University
Subject
General Physics and Astronomy,General Materials Science
Reference14 articles.
1. M. Abramowitz and IA Stegun. Handbook of mathematical functions with Formulas, Graphs, and Mathematical Tables” edited by Dover Publications. Inc., New York, Ninth Printing, 1970.
2. E. Magyari, I. Pop, and B. Keller, ”Unsteady Free Convection along an Infinite Vertical Flat Plate Embedded in a Stably Stratified Fluid-Saturated Porous Medium,” Transp. Porous. Med. 62, 233–249 (2006). https://doi.org/10.1007/s11242-005-1292-6
3. A. Bhattacharya, and R. K. Deka. ”Theoretical Study of Chemical Reaction Effects on Vertical Oscillating Plate Immersed in a Stably Stratified Fluid,” Research Journal of Applied Sciences, Engineering and Technology, 3(9), 887-898 (2011). https://maxwellsci.com/print/rjaset/v3-887-898.pdf
4. A. Shapiro, and E. Fedorovich, ”Unsteady convectively driven flow along a vertical plate immersed in a stably stratified fluid,” Journal of Fluid Mechanics, 498, 333-352 (2004). https://doi.org/10.1017/S0022112003006803
5. J.S. Park, and J.M. Hyun, ”Technical Note Transient behavior of vertical buoyancy layer in a stratified fluid,” International Journal of Heat and Mass Transfer, 41(24), 4393-4397 (1998), https://doi.org/10.1016/S0017-9310(98)00175-6
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献