Influences of thermal stratification and chemical reaction on MHD free convective flow along an accelerated vertical plate with variable temperature and exponential mass diffusion in a porous medium

Author:

Sahu Digbash1ORCID,Deka Rudra Kanta1

Affiliation:

1. Department of Mathematics Gauhati University Guwahati Assam India

Abstract

AbstractThis study examines the impacts of thermal stratification and chemical reaction on magnetohydrodynamic (MHD) free convective flow along an accelerated vertical plate with variable temperature and exponential mass diffusion, set within a porous medium. Analytical solutions, utilized, are obtained through the Laplace transform technique to accurately represent the flow's physical mechanism. The research employs advanced mathematical models to analyze the intricate interplay between MHD and convective processes under varying thermal and exponential mass diffusion conditions, offering insights into fluid dynamics that closely simulate real‐world conditions. The study draws a significant conclusion by contrasting the effects of thermal stratification with a nonstratified environment. It has been noted that when stratification is applied to the flow, the steady state is achieved more quickly. The study reveals that thermal stratification reduces fluid velocity and temperature but increases skin friction and the Nusselt number, diverging from nonstratified conditions. It also shows that parameters, like, , and significantly influence velocity, temperature, and concentration in fluid dynamics. This research could be driven by a need to enhance the understanding of fluid flow in various engineering and environmental contexts, where such conditions are prevalent, including geothermal energy extraction, thermal management, chemical processing industries, and environmental control technologies. This novel approach enhances understanding of flow processes in both natural and engineered porous environments.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3