Influences of thermal and mass stratification on unsteady magnetohydrodynamics parabolic flow along an infinite vertical plate with periodic temperature variation and exponential mass diffusion in porous medium

Author:

Sahu Digbash1ORCID,Deka Rudra Kanta1

Affiliation:

1. Department of Mathematics Gauhati University Guwahati Assam India

Abstract

AbstractThis study explores the dynamics of unsteady magnetohydrodynamics (MHD) parabolic flow along an infinite vertical plate, emphasizing the effects of thermal and mass stratification in a porous medium subjected to periodic temperature variation and exponential mass diffusion. Utilizing the Laplace transform technique to obtain precise solutions, this study effectively integrates the impacts of both thermal and mass stratification without dependence on approximations. The main goal is to assess how thermal and mass stratification impact MHD flow dynamics, temperature, and concentration profiles under varying conditions. The study provides a thorough comparison of these findings with traditional nonstratified scenarios, presenting a comprehensive analysis of fluid behavior under diverse conditions. The conclusions reveal that thermal and mass stratifications considerably diminish velocity and stabilize temperature distributions, which suggests a damping influence on fluid movement and improved management of diffusion processes. Enhanced Grashof numbers improve heat and mass transfer efficiency, while magnetic and Darcy parameters significantly influence flow resistance and heat transfer characteristics. These conditions also result in higher Nusselt and Sherwood numbers, indicating increased efficiency in heat and mass transfer. In contrast, scenarios without stratification display higher velocities and more unstable temperature and concentration profiles. The findings highlight the critical role of stratification in improving fluid dynamics and increasing the efficiency of heat and mass transfer processes, offering valuable insights for engineering and environmental applications in similar conditions. The main novelty of the research is being the first to use the Laplace transform for exact solutions on combined thermal and mass stratification in MHD flows, enhancing prediction accuracy and process control.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3