Influence of Deposition Voltage on Strontium Sulphide Doped Silver for Optoelectronic Application

Author:

Samuel Shaka O.,Frank M. Lagbegha-ebi,Ogherohwo E.P.,Ekpekpo Arthur,Zhimwang J.T.,Ikhioya Imosobomeh L.ORCID

Abstract

In the research electrochemical deposition technique was use in deposition of undoped SrS and doped SrS with silver were 0.01 mol of thioacetamide (C2H5NS), 0.1 mol of strontium chloride hexahydrate (SrCl2.6H2O), and 0.01 mol of silver nitrate (AgNO3) were utilized as the cationic, anionic, and dopant concentrations. The XRD spectra of the SrS and SrS doped silver showed prominent crystalline peaks at angles of 26.69°, 37.97°, 51.39°, and 65.56° for SrS and 26.42°, 33.42°, 37.98°, and 51.32° for SrS/Ag, respectively, with corresponding diffraction planes (111), (112), (200), and (211). However, the diffraction pattern shows that the peak intensity increases as the deposition voltage increases. The undoped SrS material morphology has a clove-like substance with precipitate; the large nano grain on the substrate's surface exhibits photon absorption but shows no traces of pinholes. When doped SrS is deposited at various precursor voltages, it forms uniform surfaces devoid of pinholes. The cell also penetrates the substrate being used for the deposition, as seen by the elemental makeup of the films. It was observed that SrS/Ag at 10V and 12V had little precipitate on the surfaces; this is because a carbon electrode was utilized, which tends to react with electrolyte at low voltages but does not do so at 14V. The films show that when the deposition voltage increased, the electrical resistivity decreased from 1.42 x 109 to 1.37 x 109 Ω.m and the thickness decreased from 125.02 to 123.025nm. This further led to an increase in conductivity from 7.04 x 108 to 7.29 x 108 S/m. It was discovered that the absorbance decreases as the electromagnetic radiation's wavelength grows and the deposition voltage rises. According to research done on the deposited material, its energy bandgap lies between 1.55 and 2.51 eV.  

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3