Beam Scanning Controller for Proton-Beam Writing

Author:

Kolinko Sergey V.1ORCID,Kolinko Ivan S.2ORCID,Polozhii Hlib E.1ORCID,Ponomarev Aleksandr G.1ORCID

Affiliation:

1. Institute of Applied Physics National Academy of Sciences of Ukraine, Sumy, Ukraine

2. Sumy State University, Sumy, Ukraine

Abstract

A scanning control system of the ion beam of MeV energies has been developed for the nuclear scanning microprobe and proton-beam writing channel as a part of accelerator-analytical complex based on the Sokol electrostatic accelerator of the Institute of Applied Physics of the National Academy of Sciences of Ukraine. The system was put into operation to replace the obsolete one based on microcontrollers. The scanning control system is based on a National Instruments reconfigurable module with a Field Programmable Gate Array. The module operates in real time and is connected to a personal computer by a high-speed PCI-Express interface with data buffering. The system provides two main modes of operation: exposure of sample areas with a given profile and raster secondary electrons imaging of the sample or a calibration grid. Profile exposure is possible both in raster and functional scanning modes. Automatic calibration of the profile scale and scan raster is also implemented. Using of reconfigurable logic makes it possible to quickly adjust the system to the conditions of a particular experiment and the available equipment. The hardware capabilities of the scanning control system allows in the future to connect up to 4 spectrometric ADC for mapping the elemental composition of samples using Proton Induced X-ray Emission and Proton Backscattering. The first experiments on the irradiation of polymethylmethacrylate have been carried out; images of the obtained microstructures taken with a scanning electron microscope are shown. The aim of this work is to develop a control system for scanning a high-energy focused beam in proton beam writing technique to create small-sized structures for special purposes, as well as to demonstrate the efficiency of the developed system.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3