SCINTILLATION MONOCRYSTALS OF KDP:Tl AND KDP:Ce DOPED BY THALLIUM AND CERIUM FOR SELECTIVE DETECTION OF FAST NEUTRONS

Author:

Abstract

This research is going to explain the fast neutrons and gamma radiation registration by the new inorganic single crystals of the KDP (Potassium Dihydrogen Phosphat) group that was grown from the water solutions and activated by the thallium Tl+ or cerium Ce3+. The appearance of the luminescence upon KDP:Tl crystals irradiation with the fast neutrons is explained by secondary ionizing radiation (recoil protons and oxygen recoil nuclei) with excitation of the activator under ionization losses for inhibition. Also the recombination mechanism with the radiation defects of the hydrogen sublattice going to transmit electron excitations to the region of the Tl+ luminescence center. In the KDP:Ce crystals the excitation mechanism of the activator has a similar character, but the luminescence itself is due to the 5d ® 4f transition in Ce3+ ions. The detection efficiency for activated KDP:Tl and KDP:Ce crystals to the fast neutrons in comparisons with organic (plastic) scintillators were calculated theoretically and experimentally. For the crystal volume about 10x10x10 mm3 with the optimal activator concentration the fast neutron detection efficiency under irradiation of 239Pu-Be is 12% for KDP:Tl and 16% for KDP:Ce, which is in a consistent with the theoretical calculation and is not lower according to the parameters of typical organic scintillators. A high natural selectivity of the KDP scintillators to the fast neutrons due to their low sensitivity to gamma radiation was detected. Herewith the internal discrimination of n/γ signals (the ratio of detection efficiencies for the fast neutrons and gamma quants) for activated KDP crystals is 7-8 times higher than of regular plastic scintillators.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3