STRUCTURE AND PHASE COMPOSITION OF W-Si MULTILAYER X-RAY MIRRORS

Author:

Abstract

X-ray diffractometry in a hard region (l~0.154 nm) was used to study the phase structure, composition and construction of W/Si multilayer X-ray mirrors (MXMs) with thicknesses of tW<10 nm for tungsten layers obtained by direct-current magnetron sputtering. Two series of samples were fabricated with different tungsten deposition rates, which differ approximately by a factor of 4: ~0.60 nm/s and ~0.15 nm/s. It is shown that tungsten layers have a polycrystalline (BCC) structure at thicknesses tW>2.7 nm, and at tW<1.9 nm they are amorphous. Using the sin2Y-method, it was found that in thin crystalline layers of tungsten (tW<10 nm), more than 3 at.% Si can be contained. Tensile stresses in the layers of crystalline tungsten do not exceed 1.1 GPa. The construction of the radial distribution functions of atoms made it possible to establish that amorphous layers of tungsten have an arrangement of atoms close to b-W. In all samples, formation of silicide interlayers is observed at the interfaces, as a result of which the actual thickness of the tungsten layers is less than the nominal one. Amorphous silicide layers, necessarily formed at the stage of MXM manufacturing, contain tungsten disilicide. Depending on the deposition rate, disilicide can have an arrangement of atoms close to either the tetragonal phase, t-WSi2 (~0.6 nm/s), or to the hexagonal phase, h-WSi2 (~0.15 nm/s). An improved model for the construction of amorphous W/Si MXMs is presented. Mechanisms for the formation of silicide layers are proposed, according to which the bottom silicide interlayers (W-on-Si) are formed mainly by ballistic mixing of tungsten and silicon atoms, and the top ones due to diffusion inermixing. The interdiffusion coefficients were estimated, which made it possible to establish that the deposited surface of the layers can be heated at least 250° above the substrate temperature. The ways of reducing the interface interaction are suggested.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3