Inheritance of spike color in einkorn wheat (Triticum monococcum L.)

Author:

Fu Hao1ORCID

Affiliation:

1. V. N. Karazin Kharkiv National University, Kharkiv, Ukraine

Abstract

Aim: specify the spike color inheritance in einkorn wheat (Triticum monococcum L.) hybrids. Methods: reciprocal hybrids between the black-spikeed UA0300282 and white-spikeed UA0300311 cultivated einkorn accessions were created with the use of the “single cross” method. Four generations were analyzed using the segregation analysis method: P1, P2, F1, and F2 at autumn and spring sowing. Results: it was found that for the combination UA0300311 × UA0300282 at autumn sowing, the most suitable inheritance model is MX2-EA-AD, which implies the presence of two main genes with an equal additive effect plus polygene systems with an additive-dominant effect. In the plants of spring sowing, spike color is described by the MX2-CD-AD model, which suggests the presence of two major genes with full dominant effect plus polygenes with additive-dominant effect. In the reciprocal combination UA0300282 × UA0300311, the optimal model that describes best the spike color dispersion in plants of autumn sowing is MX2-ADI-AD, which suggests the presence of two main genes with an additive-dominant-epistatic effect plus polygenes with the additive-dominant effect. Distribution of the spring-sowing plants in terms of the spike color is well described by the MX2-ADI-ADI model – two main genes with an additive-dominant-epistatic effect plus a system of polygenes also with an additive-dominant-epistatic effect. The genes manifest themselves differently in the trait control depending on the weather conditions determined by the sowing time. In the group of direct combination plants (UA0300311 × UA0300282) of autumn sowing, heritability determined by the main gene is 97%, while that determined by polygenes is 2.7%; at spring sowing, these values are 67% and 32% respectively. In the reciprocal combination (UA0300282 × UA0300311) of autumn sowing, the main genes heritability effect is 99%, and the polygenic system accounts for 1%; in plants of spring sowing, respectively, 72%, and 28%. Conclusions: on the basis of the spike color expressiveness in the crossing combination of the einkorn kinds of wheat UA0300311 × UA0300282, the parental forms differ in two main genes and polygenes. The ratio of spike color heritability components depends on the growing conditions: at autumn sowing, 97–99 % of heritability is determined by the main genes, the polygenes account for 1–3 % of phenotypic variability; at spring sowing, the heritability component increases to 28–33 % due to the polygenic complex.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3