Affiliation:
1. Guangxi Key Laboratory of Automatic Measurement Technology and Instrument, Guilin University of Electronic Technology, China
2. Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, China
Abstract
Recommending friends is an important mechanism for social networks to enhance their vitality and attractions to users. The huge user base as well as the sparse user relationships give great challenges to propose friends on social networks. Random walk is a classic strategy for recommendations, which provides a feasible solution for the above challenges. However, most of the existing recommendation methods based on random walk are only weighing the forward search, which ignore the significance of reverse social relationships. In this paper, we proposed a method to recommend friends by integrating reverse search into random walk. First, we introduced the FP-Growth algorithm to construct both web graphs of social networks and their corresponding transition probability matrix. Second, we defined the reverse search strategy to include the reverse social influences and to collaborate with random walk for recommending friends. The proposed model both optimized the transition probability matrix and improved the search mode to provide better recommendation performance. Experimental results on real datasets showed that the proposed method performs better than the naive random walk method which considered the forward search mode only.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献