Abstract
PurposeOnline health communities (OHCs) are platforms that help health consumers to communicate with each other and obtain social support for better healthcare outcomes. However, it is usually difficult for community members to efficiently find appropriate peers for social support exchange due to the tremendous volume of users and their generated content. Most of the existing user recommendation systems fail to effectively utilize the rich social information in social media, which can lead to unsatisfactory recommendation performance. The purpose of this study is to propose a novel user recommendation method for OHCs to fill this research gap.Design/methodology/approachThis study proposed a user recommendation method that utilized the adapted matrix factorization (MF) model. The implicit user behavior networks and the user influence relationship (UIR) network were constructed using the various social information found in OHCs, including user-generated content (UGC), user profiles and user interaction records. An experiment was conducted to evaluate the effectiveness of the proposed approach based on a dataset collected from a famous online health community.FindingsThe experimental results demonstrated that the proposed method outperformed all baseline models in user recommendation using the collected dataset. The incorporation of social information from OHCs can significantly improve the performance of the proposed recommender system.Practical implicationsThis study can help users build valuable social connections efficiently, enhance communication among community members, and potentially contribute to the sustainable prosperity of OHCs.Originality/valueThis study introduces the construction of the UIR network in OHCs by integrating various social information. The conventional MF model is adapted by integrating the constructed UIR network for user recommendation.
Subject
Economics and Econometrics,Sociology and Political Science,Communication
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献