Enhanced Android Malware Detection and Family Classification, using Conversation-level Network Traffic Features

Author:

Abuthawabeh Mohammad1,Mahmoud Khaled1

Affiliation:

1. King Hussein School of Computing Sciences, Princess Sumaya University for Technology, Jordan

Abstract

Signature-based malware detection algorithms are facing challenges to cope with the massive number of threats in the Android environment. In this paper, conversation-level network traffic features are extracted and used in a supervised-based model. This model was used to enhance the process of Android malware detection, categorization, and family classification. The model employs the ensemble learning technique in order to select the most useful features among the extracted features. A real-world dataset called CICAndMal2017 was used in this paper. The results show that Extra-trees classifier had achieved the highest weighted accuracy percentage among the other classifiers by 87.75%, 79.97%, and 66.71%for malware detection, malware categorization, and malware family classification respectively. A comparison with another study that uses the same dataset was made. This study has achieved a significant enhancement in malware family classification and malware categorization. For malware family classification, the enhancement was 39.71% for precision and 41.09% for recall. The rate of enhancement for the Android malware categorization was 30.2% and 31.14‬% for precision and recall, respectively

Publisher

Zarqa University

Subject

General Computer Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3