Author:
Ambekar Namrata Govind,Devi N. Nandini,Thokchom Surmila,Yogita
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Aafer Y, Du W, Yin H (2013) Droidapiminer: Mining api-level features for robust malware detection in android. In: Security and Privacy in Communication Networks: 9th International ICST Conference, SecureComm 2013, Sydney, NSW, Australia, September 25–28, 2013, Revised Selected Papers 9, pp. 86–103. Springer
2. Abuthawabeh M, Mahmoud KW (2020) Enhanced android malware detection and family classification, using conversation-level network traffic features. Int Arab J Inf Technol 17(4A):607–614
3. Aldehim G, Arasi MA, Khalid M, Aljameel SS, Marzouk R, Mohsen H, Yaseen I, Ibrahim SS (2023) Gauss-mapping black widow optimization with deep extreme learning machine for android malware classification model. IEEE Access 11:87062–87070
4. Alwarthan S, Aslam N, Khan IU (2022) An explainable model for identifying at-risk student at higher education. IEEE Access 10:107649–107668
5. Arik SÖ, Pfister T (2021) Tabnet: Attentive interpretable tabular learning. In: Proceedings of the AAAI Conference on Artificial Intelligence vol. 35, pp. 6679–6687
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献