Abstract
We study sets of triple points of Böröczky’s arrangements of lines in the context of the containment problem proposed by Harbourne and Huneke. We show that in the class of those arrangements, the smallest counterexample to the containment I(3) ⊂ I2 is obtained when the number of lines is equal to 12.
Publisher
Luhansk Taras Shevchenko National University
Subject
Discrete Mathematics and Combinatorics,Algebra and Number Theory
Reference11 articles.
1. [1]Bocci, C., Harbourne, B.: Comparing Powers and Symbolic Powers of Ideals.J.Algebraic Geometry19: 399 - 417 (2010).
2. [2]Czapliński, A., Główka, A., Malara, G., Lampa-Baczynska, M., Łuszcz-Świdecka,P., Pokora, P. and Szpond, J.: A counterexample to the containmentI(3)⊂I2over the reals.Adv. Geom.16: 77 - 82 (2016).
3. [3]Decker, W., Greuel, G.-M., Pőster, G., Schönemann, H.:S i n g u l a r3-1-3 Ð Acomputer algebra system for polynomial computations. http://www.singular.uni-kl.de (2011).
4. [4]Dumnicki, M., Szemberg, T., Tutaj-Gasińska, H.: Counterexamples to theI(3)⊂I2containment.J. Alg.393: 24 - 29 (2013).
5. [5]Ein, L., Lazarsfeld, R., Smith, K.: Uniform bounds and symbolic powers onsmooth varieties.Invent. Math.144: 241 - 252 (2001).