Abstract
Paraffin is well known thermal energy storage with the high latent heat of fusion. Unfortunately, low thermal conductivity and low melting temperature inhibit large-scale applications for lower temperature applications like solar water heaters and desalination. The addition of high thermal conductivity material can increase the thermal conductivity of paraffin and increase the melting temperature of paraffin. In this study, a new approach is taken by using volcanic sand as thermal conductivity enhancement material. The properties of the sand are examined. The chemical composition of the sand is dominated by Fe (51.23 %), Fe2O3 (23.24 %) and SiO2 (11 %), which are known as good thermal conductivity materials. Six different compositions of paraffin/sand (weight ration) are tested to observe the melting and vapor temperature of the composite. Adding sand (with granule size of 44 µm) by 30 wt % can accelerate the charging rate by 25 % compared to pure paraffin, where the discharging rate is increased significantly by 17.8 %. The supercooling degree of the composite is only 1 °C, where pure paraffin has a supercooling degree by 8 °C. The charging and discharging characteristics for each sample are discussed in detail within the article. Overall, the addition of volcanic sand improves paraffin's charging and discharging rate, reducing the supercooling degree and can be considered a convenient method to improve the paraffin performance as latent heat storage
Subject
General Physics and Astronomy,General Engineering
Reference31 articles.
1. Kanimozhi, B., Harish, K., Tarun, B. S., Sainath Reddy, P. S., Sujeeth, P. S. (2017). Charging and Discharging Processes of Thermal Energy Storage System Using Phase change materials. IOP Conference Series: Materials Science and Engineering, 197, 012040. doi: https://doi.org/10.1088/1757-899x/197/1/012040
2. Ismail, I., Rahman, R. A., Haryanto, G., Pane, E. A. (2021). The Optimal Pitch Distance for Maximizing the Power Ratio for Savonius Turbine on Inline Configuration. International Journal of Renewable Energy Research, 11 (2), 595–599.
3. Praveen, B., Suresh, S. (2018). Experimental study on heat transfer performance of neopentyl glycol/CuO composite solid-solid PCM in TES based heat sink. Engineering Science and Technology, an International Journal, 21 (5), 1086–1094. doi: https://doi.org/10.1016/j.jestch.2018.07.010
4. Klarzak, I., Ura-Bińczyk, E., Płocińska, M., Jurczyk-Kowalska, M. (2018). Effect of temperature and humidity on heat effect of commercial chemical warmers based on iron powder. Thermal Science and Engineering Progress, 6, 87–94. doi: https://doi.org/10.1016/j.tsep.2018.03.006
5. Liu, Y., Yu, K., Lu, S., Wang, C., Li, X., Yang, Y. (2020). Experimental research on an environment-friendly form-stable phase change material incorporating modified rice husk ash for thermal energy storage. Journal of Energy Storage, 31, 101599. doi: https://doi.org/10.1016/j.est.2020.101599
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献