Increasing the charge/discharge rate for phase-change materials by forming hybrid composite paraffin/ash for an effective thermal energy storage system

Author:

Suyitno Budhi Muliawan,Rahmalina Dwi,Rahman Reza Abdu

Abstract

<abstract> <p>Low-temperature latent heat storage (LHS) systems are suitable for incorporating paraffin as the storage material. However, they face difficulty in actual implementation due to low thermal conductivity (TC). The present study used volcanic ash as an environmentally friendly and cost-effective material to increase the TC of paraffin. Three composites of paraffin/ash were prepared with ash proportions of 10 wt%, 30 wt% and 50 wt%. Characterizations were done to evaluate the average TC and properties. Thermal performance evaluation was conducted by analyzing the static charge/discharge cycle. The average TC for paraffin was 0.214 W/m·K. Adding volcanic ash improved the TC to 19.598 W/m·K. It made the charge/discharge performance of the composite better than that of pure paraffin. The charge rate for the composite ranged from 3.83 ℃/min to 5.12 ℃/min. The highest discharge rate was obtained at 4.21 ℃/min for the composite paraffin<sub>50</sub>/ash<sub>50</sub>. The freezing temperature for the composite is influenced by the ash proportion, which can be taken as a suitable approach to adjust the freezing point of paraffin-based thermal energy storage (TES). The detailed results for the characterization and thermal performance evaluation are described thoroughly within the article. The overall result indicates that volcanic ash is applicable for improving the TC and charge/discharge rate of paraffin-based TES.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3