Development of the methodological approaches for the attitude control system of the Earth remote sensing satellite in the conditions of the onboard equipment partial failures

Author:

Zheliabov PetroORCID,Lapkhanov ErikORCID

Abstract

The spacecraft controllability of the angular motion is possible only with operability of the attitude and orbit control system (AOCS) of the spacecraft, sensors, actuators and the spacecraft power system. However, there is a rather significant probability of failure of this equipment during the operation of the spacecraft. This is especially observed after half of the spacecraft's lifetime or because of emergency situations. There is a problem which is connected with providing the maximum performance of the AOCS in case of partial failures of their actuators (reaction wheels (RW), magnetorquer rods (MGTR), etc.). Thus, the purpose of this work is the development and synthesis of special algorithms for spacecraft angular motion control in the emergency situations which are connected with RWs partial failures and restrictions of onboard electricity consumption. The approach of synthesis of this control algorithms is based on using mobile control methods which allow to reserve RWs by MGTRs. There are different variants of control loops depending on MGTRs turning on combinations. There were proposed two types of control switching functions: time-periodic and switching by deviation. Also was proposed a methodology of controller synthesis using these switching functions. Using this methodology and computer simulation, it was shown the possibility of providing angular nadir orientation and stabilization of the spacecraft with maximum 1−1.5 deg error in case of time-periodic switching functions implementation. Switching by deviation allows to reduce onboard electricity consumption for 25−30 % comparing with using time-periodic switching. However, the accuracy of stabilization significantly lower in case of switching by deviation. Considering these estimates, the corresponding methodological recommendations were formulated for use switching functions depending on emergency

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3