Affiliation:
1. Keldysh Institute of Applied Mathematics of RAS
Abstract
The paper covers main recent results in the active magnetic attitude control of satellites. Three main implementation situations are outlined. Angular velocity damping opens the problem as the auxiliary control task. Next, implementation with other actuators and passive stabilization concepts is considered. Magnetic attitude control is restricted in the direction: control torque cannot be applied along the magnetic induction vector. Other actuators or environmental properties may enhance the control, providing control authority along the restricted axis. This comes at the cost of restricted attitude motion. Passive gravitational stabilization, spin stabilization and dual spin satellites present main cases. The satellite may acquire the local vertical and one axis inertial attitude that represent important cases. The most challenging and practically promising situation is the fully magnetic three axis attitude control. This reduces the hardware requirements for the attitude control system to the minimum. However, this also comes at the cost of a restriction on the control torque vector and low attitude accuracy and time-response. Feedback law with proper control gains tuning, sliding control and optimization techniques are considered for this problem.
Publisher
TP National Information Satellite System
Reference113 articles.
1. Fischell R. E. Magnetic damping of the angular motions of Earth satellites // Journal of the American Rocket Society, 1961, vol. 31, no. 9, pp. 1210–1217.
2. Grasshoff L. H. A method for controlling the attitude of a spin-stabilized satellite // Journal of the American Rocket Society, 1961, vol. 31, no. 5, pp. 646–649.
3. Белецкий В. В., Зонов Ю. В. Вращение и ориентация третьего советского спутника // Сборник "Искусственные спутники Земли”. АН СССР, 1961. № 7. С. 32–55.
4. Bhat S. P. Controllability of nonlinear time-varying systems: applications to spacecraft attitude control using magnetic actuation // IEEE Transactions on Automatic Control, 2005, vol. 50, no. 11, pp. 1725–1735.
5. Bhat S. P., Dham A. S. Controllability of spacecraft attitude under magnetic actuation // 42nd IEEE International Conference on Decision and Control. Maui, HI, USA, 2003, vol. 3, pp. 2383–2388.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献