Development of object detection and classification with YOLOv4 for similar and structural deformed fish

Author:

Kuswantori AriORCID,Suesut TaweepolORCID,Tangsrirat WorapongORCID,Nunak NavaphattraORCID

Abstract

Food scarcity is an issue of concern due to the continued growth of the human population and the threat of global warming and climate change. Increasing food production is expected to meet the challenges of food needs that will continue to increase in the future. Automation is one of the solutions to increase food productivity, including in the aquaculture industry, where fish recognition is essential to support it. This paper presents fish recognition using YOLO version 4 (YOLOv4) on the "Fish-Pak" dataset, which contains six species of identical and structurally damaged fish, both of which are characteristics of fish processed in the aquaculture industry. Data augmentation was generated to meet the validation criteria and improve the data balance between classes. For fish images on a conveyor, flip, rotation, and translation augmentation techniques are appropriate. YOLOv4 was applied to the whole fish body and then combined with several techniques to determine the impact on the accuracy of the results. These techniques include landmarking, subclassing, adding scale data, adding head data, and class elimination. Performance for each model was evaluated with a confusion matrix, and analysis of the impact of the combination of these techniques was also reviewed. From the experimental test results, the accuracy of YOLOv4 for the whole fish body is only 43.01 %. The result rose to 72.65 % with the landmarking technique, then rose to 76.64 % with the subclassing technique, and finally rose to 77.42 % by adding scale data. The accuracy did not improve to 76.47 % by adding head data, and the accuracy rose to 98.75 % with the class elimination technique. The final result was excellent and acceptable

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3