Fish Detection and Classification for Automatic Sorting System with an Optimized YOLO Algorithm

Author:

Kuswantori Ari1ORCID,Suesut Taweepol1,Tangsrirat Worapong1ORCID,Schleining Gerhard2,Nunak Navaphattra3ORCID

Affiliation:

1. Department of Instrumentation and Control Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok 10520, Thailand

2. Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria

3. Department of Food Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok 10520, Thailand

Abstract

Automatic fish recognition using deep learning and computer or machine vision is a key part of making the fish industry more productive through automation. An automatic sorting system will help to tackle the challenges of increasing food demand and the threat of food scarcity in the future due to the continuing growth of the world population and the impact of global warming and climate change. As far as the authors know, there has been no published work so far to detect and classify moving fish for the fish culture industry, especially for automatic sorting purposes based on the fish species using deep learning and machine vision. This paper proposes an approach based on the recognition algorithm YOLOv4, optimized with a unique labeling technique. The proposed method was tested with videos of real fish running on a conveyor, which were put randomly in position and order at a speed of 505.08 m/h and could obtain an accuracy of 98.15%. This study with a simple but effective method is expected to be a guide for automatically detecting, classifying, and sorting fish.

Funder

King Mongkut’s Institute of Technology Ladkrabang Research Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference47 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3