Analysis of tool wear and surface roughness in high-speed milling process of aluminum alloy Al6061

Author:

Nguyen Nhu-TungORCID,Tien Dung HoangORCID,Tung Nguyen TienORCID,Luan Nguyen DucORCID

Abstract

In this study, the influence of cutting parameters and machining time on the tool wear and surface roughness was investigated in high-speed milling process of Al6061 using face carbide inserts. Taguchi experimental matrix (L9) was chosen to design and conduct the experimental research with three input parameters (feed rate, cutting speed, and axial depth of cut). Tool wear (VB) and surface roughness (Ra) after different machining strokes (after 10, 30, and 50 machining strokes) were selected as the output parameters. In almost cases of high-speed face milling process, the most significant factor that influenced on the tool wear was cutting speed (84.94 % after 10 machining strokes, 52.13 % after 30 machining strokes, and 68.58 % after 50 machining strokes), and the most significant factors that influenced on the surface roughness were depth of cut and feed rate (70.54 % after 10 machining strokes, 43.28 % after 30 machining strokes, and 30.97 % after 50 machining strokes for depth of cut. And 22.01 % after 10 machining strokes, 44.39 % after 30 machining strokes, and 66.58 % after 50 machining strokes for feed rate). Linear regression was the most suitable regression of VB and Ra with the determination coefficients (R2) from 88.00 % to 91.99 % for VB, and from 90.24 % to 96.84 % for Ra. These regression models were successfully verified by comparison between predicted and measured results of VB and Ra. Besides, the relationship of VB, Ra, and different machining strokes was also investigated and evaluated. Tool wear, surface roughness models, and their relationship that were found in this study can be used to improve the surface quality and reduce the tool wear in the high-speed face milling of aluminum alloy Al6061

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3