Multiobjective Optimization of Surface Roughness and Tool Wear in High-Speed Milling of AA6061 by Machine Learning and NSGA-II

Author:

Nguyen Anh-Tu1ORCID,Nguyen Van-Hai23ORCID,Le Tien-Thinh23ORCID,Nguyen Nhu-Tung4

Affiliation:

1. Faculty of Mechanical Engineering, Hanoi University of Industry, 298 Cau Dien Str., Bac Tu Liem District, Hanoi, Vietnam

2. Faculty of Mechanical Engineering and Mechatronics, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam

3. PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No. 167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Vietnam

4. HaUI Institute of Technology, Hanoi University of Industry, Hanoi, Vietnam

Abstract

This work addresses the prediction and optimization of average surface roughness (Ra) and maximum flank wear (Vbmax) of 6061 aluminum alloy during high-speed milling. The investigation was done using a DMU 50 CNC 5-axis machine with Ultracut FX 6090 fluid. Four factors were examined: the table feed rate, cutting speed, depth of cut, and cutting length. Three levels of each factor were examined to conduct 81 experiment runs. The response parameters in these experiments were measurements of Ra and Vbmax. We applied a two-pronged approach that combines machine learning (ML) and a Nondominated Sorting Genetic Algorithm (NSGA-II) to model and optimize Ra and Vbmax. Four ML models were used to predict Ra and Vbmax: linear regression (LIN), support vector machine regression (SVR), a gradient boosting tree (GBR), and an artificial neural network (ANN). The input variables were the significant factors that affect the surface quality and tool wear: the feed rate, depth of cut, cutting speed, and cutting time. Several quality metrics were employed to quantify the performance of the models, such as the root mean squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). As a result, SVR and ANN were found to have the best predictive performance for Ra and Vbmax. These models and the NSGA-II-based approach were then employed for multiobjective optimization of cutting parameters during high-speed milling of aluminum 6061. Fifty Pareto solutions were found with Ra in the range of 0.257 to 0.308 µm and Vbmax in the range of 136.198 to 137.133 μm. Experimental validations were then conducted to confirm that the optimum solution was within an acceptable error range. More precisely, the absolute percentage errors for Ra and Vbmax were 2.5% and 1.5%, respectively. This work proposes an effective strategy for efficiently combining machine learning techniques and the NSGA-II multiobjective optimization algorithm. The experimental validations have reflected the potential for applying this strategy in various machining-optimization problems.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3