SYNTHESIS AND PROPERTIES OF ION EXCHANGERS DERIVED FROM NON-WOOD CELLULOSE

Author:

Yelatontsev Dmitry A.,Mukhachev Anatoly P.

Abstract

A rational scheme for the processing of large-scale agro-industrial waste – walnut shells Juglans Regia L. and apricot kernels Prunus Armeniaca L. was proposed. At first stage, the raw material was delignificated using liquid ammonia to remove hemicelluloses and lignin. Isolated non-wood pulp is chemically modifying to increase sorption and ion exchange properties. For the synthesis of anion exchangers, cellulose was aminated using pyridine or trimethylamine after preliminary treatment consequentially with formalin and C2H5OH in HCl medium. As a result, we obtained high and weakly-basic ion exchangers with nitrogen content of 10.3–11.5% and high exchange capacity towards various classes of inorganic anions. For synthesis of cation exchangers, cellulose was treated with solution consisting of 20% H3PO4, 40% CO(NH2)2, and 40% H2O. Consequently, we obtained phosphorus-containing high-acidic cation exchangers with exchange capacity towards heavy metal of 5.5–8.6 mmol∙cm–3. Both types of ion exchangers have a high capacity towards uranium: anion exchanger – 4.25 mmol∙cm–3 and cation exchanger – 4.94 mmol∙cm–3, respectively. Average total yield of ion exchangers related to weight of air-dry feedstock was 90%. Synthesized ion exchangers characterized by IR spectroscopy. Presence of amine functional groups –NH2 in aminated cellulose and phosphate ester groups –OPO(OH)2 in phosphorylated cellulose was established. Specific surface area and total static exchange capacity of synthesized ion exchangers were established. An environmentally friendly method for the disposal of spent solutions from the synthesis of cation exchangers was proposed. It allows getting a liquid complex fertilizer containing 17% N and 13.9% P2O5. Usage of this fertilizer for grain crops feeding increases plants length by 40–75%, as well as overall biomass increase by 20–30%.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3