Apricot Seed Shells and Walnut Shells as Unconventional Sugars and Lignin Sources

Author:

Halysh Vita12,Romero-García Juan Miguel34ORCID,Vidal Alfonso M.3ORCID,Kulik Tetiana2,Palianytsia Borys2,García Minerva5,Castro Eulogio34ORCID

Affiliation:

1. Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine

2. Laboratory of Kinetics and Mechanisms of Chemical Reactions on the Surface of Solids, Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Str., 17, 03164 Kyiv, Ukraine

3. Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain

4. Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain

5. Tecnológico Nacional de México/Instituto Tecnológico de Zitácuaro, Av. Tecnológico No. 186 Manzanillos, Zitácuaro 61534, Michoacán, Mexico

Abstract

The present study focuses on using apricot seeds shells and walnut shells as a potential renewable material for biorefinery in Ukraine. The goal of the research work was to determine the relationship between the chemical composition of solid residues from biomass after acid pretreatment with H2SO4, alkaline pretreatment with NaOH, and a steam explosion pretreatment and the recovery of sugars and lignin after further enzymatic hydrolysis with the application of an industrial cellulase Cellic CTec2. Apricot seeds shells and walnut shells consist of lots of cellulose (35.01 and 24.19%, respectively), lignin (44.55% and 44.63%, respectively), hemicelluloses (10.77% and 26.68%, respectively), and extractives (9.97% and 11.41%, respectively), which affect the efficiency of the bioconversion of polysaccharides to sugars. The alkaline pretreatment was found to be more efficient in terms of glucose yield in comparison with that of acid and steam explosion, and the maximum enzymatic conversions of cellulose reached were 99.7% and 94.6% for the solids from the apricot seeds shells and the walnut shells, respectively. The maximum amount of lignin (82%) in the residual solid was obtained during the processing of apricot seed shells submitted to the acid pretreatment. The amount of lignin in the solids interferes with the efficiency of enzymatic hydrolysis. The results pave the way for the efficient and perspective utilization of shells through the use of inexpensive, simple and affordable chemical technologies, obtaining value-added products, and thus, reducing the amount of environmental pollution (compared to the usual disposal practice of direct burning) and energy and material external dependency (by taking advantage of these renewable, low-cost materials).

Funder

COST Action

Regional Government of Andalusia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3