COMPUTATIONAL AND EXPERIMENTAL STUDY OF GRANULATION IN FLUIDIZED BED REACTOR

Author:

Mizonov Vadim E.,Mitrofanov Andrey V.,Tannous Katia,Ovchinnikov Lev N.

Abstract

The objective of the study is to build a simple but informative model to describe the kinetics of layering granulation in a batch fluidized bed reactor. A cell model based on the theory of Markov chains to describe this kinetics is proposed. Several parallel chains of perfectly mixed cell according to the number of size fractions, which are under observation, were introduced. The vectors of particles volume content in the cells describe the state of the process. Evolution of the state is conditioned by particles transition from the cells of one chain to another due to their size enlargement during granulation and by particles migration along the chains due to their interaction with fluidizing gas upstream flow. The process is observed in a discrete moments of time. It is supposed that the volume of binding solution coming into a cell of a chain during one time step interacts only with the particles that can enlarge their size to transit to the cell of the next larger size fraction. The migration of the particles of a size fraction along its chain is controlled by the matrix of transition probabilities, which is different for each size fraction and depends on the total particles concentration. The model allows qualitative estimating of influence of the process parameters on the granulation kinetics. In order to validate the model, the experimental study of ammonium sulphate granulation in the lab scale fluidized bed reactor was carried out. The comparison of theoretical and experimental results was done for the example of particle size enlargement at different flow rate of the binding solution feed. A good correlation between theoretical and experimental data was found for both the mean particle size growth and the fraction size distribution at different moments of time.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AN INNOVATE METHOD OF THERMOGRAVIMETRIC DATA ANALYSIS;IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA;2021-03-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3