AN INNOVATE METHOD OF THERMOGRAVIMETRIC DATA ANALYSIS

Author:

Mal’ko Mihail V.,Vasilevich Sergej V.,Mitrofanov Andrey V.,Mizonov Vadim E.

Abstract

The objective of the study is to examine the Coats-Redfern approximation and to propose an innovative kinetic calculation method for the complex process of the heavy tar thermal decomposition under non-isothermal process. The thermal decomposition process was examined using the thermogravimetric analysis. There are several kinetic models proposed to analyze pyrolysis mechanism in terms of the formal reaction. In this manner, the kinetic parameters of the pyrolysis process can be evaluated based on total mass loss (thermogravimetric analysis –TGA). The TGA procedures can be conducted with isothermal or non-isothermal conditions, but the experimental data obtained according to this procedure have to be transformed into appropriate correlation. The obtained results have shown that the reaction takes place within temperature range of 540 K to 700 K and the inductive period of the process is about 224 min. Kinetic parameters were estimated with using of the conventional Coats-Redfern method. A new kinetic calculation method has been designed to provide a less laboriousness of identifications procedures compared with Coats-Redfern approximation and to take into account an induction time of the process. As the outcome of this study, it was shown that the kinetic parameters estimated with using of the proposed model-fitted method gives the more appropriate correlation in comparison with the conventional Coats-Redfern method. The proposed method uses the Coats-Redfern algorithm for evaluation of the reaction mechanism, but the value of the constant rate is defined directly from experimental data on the conversion rate.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Co-gasification study of blends of municipal solid waste with sugarcane bagasse and rice husk using the Coats-Redfern method;Journal of the Energy Institute;2024-04

2. Study of the kinetics of aviation oils thermal conversion under non-isothermal conditions;Proceedings of the National Academy of Sciences of Belarus, Chemical Series;2023-12-02

3. Thermal conversion of aviation oils;Civil Aviation High Technologies;2023-10-30

4. Design and application of a novel direct light-driven thermogravimetric analyzer;Solar Energy;2023-03

5. Modeling the Process of Obtaining Liquid Pyrolysis Products of Plant Biomass Taking into Account the Rate of their Cooling;ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations;2022-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3