INFLUENCE OF LIQUID-PHASE OXIDATIVE TREATMENTS ON STRUCTURE AND HYDROPHILITY OF CARBON NANOTUBES

Author:

Tabulina Lyudmila V.,Komissarov Ivan V.,Rusalskaya Tamara G.,Shulitsky Boris G.,Shaman Yuri P.,Bazarova Marina I.

Abstract

Carbon nanotubes (CNTs) were synthesized by gas phase chemical deposition (CVD) using methane as a hydrocarbon reagent and using a catalyst of iron oxide deposited on fine aluminum oxide, as well as the same catalyst with the addition of molybdenum oxide deposited on fine magnesium oxide. The synthesized materials were treated with concentrated nitric acid (HNO3) or a mixture of concentrated nitric and sulfuric acids (HNO3 / H2SO4) in a volume ratio of 2: 1, at a temperature of 110-120 ° C for 1 h. Some of them were subjected to peroxide action (H2O2) before oxidative acid treatments for 1-2 h at a temperature of 100-110 ° C. Structural features, elemental compositions of synthesized CNTs were investigated before and after liquid-phase oxidative treatments by methods such as transmission electron microscopy, Raman spectroscopy, X-ray energy dispersive spectroscopy, X-ray phase analysis. In this work, the ability of CNTs that were undergone treatment in various oxidizing environments to form stable concentrated aqueous suspensions was studied. It was established that the initial defectity of the CNT molecules significantly affects the hydrophilic properties of oxidized CNT modifications. This causes their different ability to form concentrated, stable aqueous suspensions, predetermines the choice of combinations of oxidizing liquid-phase treatments that most contributing to this. It was revealed that HNO3 and HNO3 / H2SO4 mixture at the used temperature conditions of treatments and their duration do not have a strong destructive effect on the structure of CNT. The oxidative effect of these reagents on the molecules of this material is manifested mainly in defective places. The cleaning of the catalytic components of the synthesis from the catalytic components contributes to the more efficient purification of HNO3 / H2SO4 with the formation of stable aqueous suspensions from the molecules of this material, and this does not depend on the characteristics of the synthesis of the CNTs.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3