Molecular Cloning and Functional Expression of the Rat 175-kDa Hyaluronan Receptor for Endocytosis

Author:

Zhou Bin1,Weigel Janet A.1,Saxena Amit1,Weigel Paul H.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190

Abstract

We recently purified the rat liver hyaluronan receptor for endocytosis (HARE) and found abundant expression of 175- and ∼300-kDa HARE species in sinusoidal endothelial cells of the liver, spleen, and lymph nodes. We report herein the first cloning and functional expression of the rat 175-kDa HARE. Peptide sequences were obtained from the purified 175-kDa HARE, and degenerate oligonucleotide primers were designed for reverse transcription-polymerase chain reaction and cDNA cloning. Results of 5′-rapid amplification of cDNA ends, Northern analysis, N-terminal sequence, and antibody reactivity analyses indicated the absence of mRNA directly encoding the 175-kDa HARE. This protein is most likely derived from a larger precursor. Accordingly, we constructed an artificial 4.7-kb cDNA encoding the 1431 amino acid 175-kDa HARE. The predicted type I membrane protein has a mass of 156,393 Da and a pI of 7.86. The 175-kDa HARE cDNA, fused to the N-terminal leader sequence of the Ig κ-chain, was transfected transiently into COS-7 cells and stably into SK-Hep-1 cells, respectively, to assess hyaluronan or hyaluronic acid (HA)-binding activity and endocytosis. In both cases, HARE expression and HA-binding activity were detected. Furthermore, stable SK-175HARE cells demonstrated specific endocytosis of125I-HA and receptor recycling. Fluorescence-activated cell sorting analysis confirmed that recombinant HARE was expressed on the cell surface and that fluorescent HA uptake was inhibited by a specific blocking monoclonal antibody against HARE. Additionally, HARE was substantially colocalized with clathrin, but not with internalized HA that was delivered to lysosomes. The results confirm that recombinant 175-kDa HARE is an authentic endocytic receptor for HA and that this receptor can function independently of the ∼300-kDa HARE. HARE is the first functionally identified member of a protein family that shares a similar organization of Fasciclin, epidermal growth factor-like, Xlink, and transmembrane domains.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3