Kinesin-14 Family Proteins HSET/XCTK2 Control Spindle Length by Cross-Linking and Sliding Microtubules

Author:

Cai Shang1,Weaver Lesley N.2,Ems-McClung Stephanie C.3,Walczak Claire E.3

Affiliation:

1. *Biochemistry Program,

2. Departments of Biology and

3. Medical Sciences, Indiana University, Bloomington, IN 47405

Abstract

Kinesin-14 family proteins are minus-end directed motors that cross-link microtubules and play key roles during spindle assembly. We showed previously that the Xenopus Kinesin-14 XCTK2 is regulated by Ran via the association of a bipartite NLS in the tail of XCTK2 with importin α/β, which regulates its ability to cross-link microtubules during spindle formation. Here we show that mutation of the nuclear localization signal (NLS) of human Kinesin-14 HSET caused an accumulation of HSET in the cytoplasm, which resulted in strong microtubule bundling. HSET overexpression in HeLa cells resulted in longer spindles, similar to what was seen with NLS mutants of XCTK2 in extracts, suggesting that Kinesin-14 proteins play similar roles in extracts and in somatic cells. Conversely, HSET knockdown by RNAi resulted in shorter spindles but did not affect pole formation. The change in spindle length was not dependent on K-fibers, as elimination of the K-fiber by Nuf2 RNAi resulted in an increase in spindle length that was partially rescued by co-RNAi of HSET. However, these changes in spindle length did require microtubule sliding, as overexpression of an HSET mutant that had its sliding activity uncoupled from its ATPase activity resulted in cells with spindle lengths shorter than cells overexpressing wild-type HSET. Our results are consistent with a model in which Ran regulates the association of Kinesin-14s with importin α/β to prevent aberrant cross-linking and bundling of microtubules by sequestering Kinesin-14s in the nucleus during interphase. Kinesin-14s act during mitosis to cross-link and slide between parallel microtubules to regulate spindle length.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3