Affiliation:
1. Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
Abstract
Human Golgi-localized, γ-ear–containing, ADP-ribosylation factor–binding proteins (Ggas) bind directly to acidic dileucine sorting motifs in the cytosolic tails (C-tails) of intracellular receptors. Despite evidence for a role in recruiting ubiquitinated cargo, it remains unclear whether yeast Ggas also function by binding peptide-sorting signals directly. Two-hybrid analysis shows that the Gga1p and Gga2p Vps27, Hrs, Stam (VHS) domains both bind a site in the Kex2p C-tail and that the Gga2p VHS domain binds a site in the Vps10p C-tail. Binding requires deletion of an apparently autoinhibitory sequence in the Gga2p hinge. Ser780in the Kex2p C-tail is crucial for binding: an Ala substitution blocks but an Asp substitution permits binding. Biochemical assays using purified Gga2p VHS–GGA and TOM1 (GAT) and glutathione S-transferase–Kex2p C-tail fusions show that Gga2p binds directly to the Kex2p C-tail, with relative affinities Asp780> Ser780> Ala780. Affinity-purified antibody against a peptide containing phospho-Ser780recognizes wild-type Kex2p but not S780A Kex2p, showing that Ser780is phosphorylated in vivo; phosphorylation of Ser780is up-regulated by cell wall–damaging drugs. Finally, mutation of Ser780alters trafficking of Kex2p both in vivo and in cell-free trans-Golgi network (TGN)–prevacuolar compartment (PVC) transport. Thus yeast Gga adaptors facilitate TGN–PVC transport by direct binding of noncanonical phosphoregulated Gga-binding sites in cargo molecules.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献