Abstract
Phosphoinositides serve as key membrane determinants for assembly of clathrin coat proteins that drive formation of clathrin-coated vesicles. At the trans-Golgi network (TGN), phosphatidylinositol 4-phosphate (PtdIns4P) plays important roles in recruitment of two major clathrin adaptors, Gga (Golgi-localized, gamma-adaptin ear homology, Arf-binding) proteins and the AP-1 (assembly protein-1) complex. The molecular mechanisms that mediate localization of phosphatidylinositol kinases responsible for synthesis of PtdIns4P at the TGN are not well characterized. We identify two motifs in the yeast phosphatidylinositol 4-kinase, Pik1, which are required for binding to the VHS domain of Gga2. Mutations in these motifs that inhibit Gga2–VHS binding resulted in reduced Pik1 localization and delayed accumulation of PtdIns4P and recruitment of AP-1 to the TGN. The Pik1 homolog in mammals, PI4KIIIβ, interacted preferentially with the VHS domain of GGA2 compared with VHS domains of GGA1 and GGA3. Depletion of GGA2, but not GGA1 or GGA3, specifically affected PI4KIIIβ localization. These results reveal a conserved role for Gga proteins in regulating phosphatidylinositol 4-kinase function at the TGN.
Funder
HHS | NIH | National Institute of General Medical Sciences
UC | University of California, Los Angeles
Publisher
Proceedings of the National Academy of Sciences
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献