Mitochondrial proteomic approach reveals galectin-7 as a novel BCL-2 binding protein in human cells

Author:

Villeneuve Christelle1,Baricault Laurent1,Canelle Ludovic2,Barboule Nadia1,Racca Carine1,Monsarrat Bernard2,Magnaldo Thierry3,Larminat Florence1

Affiliation:

1. LBCMCP, CNRS-UMR5088

2. IPBS, CNRS-UMR5089, Université de Toulouse, 31077 Toulouse, France

3. LBPG, CNRS-UMR6267/INSERM U998, Faculté de Médecine, 06107 Nice, France

Abstract

Although the anti-apoptotic activity of Bcl-2 has been extensively studied, its mode of action remains incompletely understood. Deciphering the network of Bcl-2 interacting factors is necessary to better understand the key function of Bcl-2 in apoptosis initiation. To identify novel Bcl-2 mitochondrial partners, we have combined a Bcl-2 immunocapture with a mass spectrometry analysis using highly pure mitochondrial fractions isolated from human cancer cells. We identified at high confidence 127 potential Bcl-2–interacting proteins. Gene ontology mining reveals enrichment for mitochondrial proteins, endoplasmic reticulum–associated proteins, and cytoskeleton-associated proteins. Importantly, we report the identification of galectin-7 (Gal7), a member of a family of β-galactoside–binding lectins that was already known to exhibit a pro-apoptotic function, as a new mitochondrial Bcl-2 interacting partner. Our data further show that endogenous Bcl-2 coimmunoprecipitates with Gal7 and that recombinant Gal7 directly interacts with recombinant Bcl-2. A fraction of Gal7 is constitutively localized at mitochondria in a Bcl-2–dependent manner and sensitizes the mitochondria to the apoptotic signal. In addition, we show that the Bcl-2/Gal7 interaction is abolished following genotoxic stress. Taken together, our findings suggest that the binding of Gal7 to Bcl-2 may constitute a new target for enhancing the intrinsic apoptosis pathway.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3