Subunit organization in the Dam1 kinetochore complex and its ring around microtubules

Author:

Ramey Vincent H.12,Wong Amanda3,Fang Jie4,Howes Stuart1,Barnes Georjana3,Nogales Eva234

Affiliation:

1. Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720

2. Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

3. Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720

4. Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720-3220

Abstract

All eukaryotic cells must segregate their chromosomes equally between two daughter cells at each division. This process needs to be robust, as errors in the form of loss or gain of genetic material have catastrophic effects on viability. Chromosomes are captured, aligned, and segregated to daughter cells via interaction with spindle microtubules mediated by the kinetochore. In Saccharomyces cerevisiae one microtubule attaches to each kinetochore, requiring extreme processivity from this single connection. The yeast Dam1 complex, an essential component of the outer kinetochore, forms rings around microtubules and in vitro recapitulates much of the functionality of a kinetochore–microtubule attachment. To understand the mechanism of the Dam1 complex at the kinetochore, we must know how it binds to microtubules, how it assembles into rings, and how assembly is regulated. We used electron microscopy to map several subunits within the structure of the Dam1 complex and identify the organization of Dam1 complexes within the ring. Of importance, new data strongly support a more passive role for the microtubule in Dam1 ring formation. Integrating this information with previously published data, we generated a structural model for the Dam1 complex assembly that advances our understanding of its function and will direct future experiments.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3