Structural view of the yeast Dam1 complex, a ring-shaped molecular coupler for the dynamic microtubule end

Author:

Wu Shaowen1,Grishchuk Ekaterina L.12ORCID

Affiliation:

1. Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.

2. Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117997, Russia

Abstract

Abstract In a dividing eukaryotic cell, proper chromosome segregation requires the dynamic yet persistent attachment of kinetochores to spindle microtubules. In the budding yeast Saccharomyces cerevisiae, this function is especially crucial because each kinetochore is attached to a single microtubule; consequently, loss of attachment could lead to unrecoverable chromosome loss. The highly specialized heterodecameric Dam1 protein complex achieves this coupling by assembling into a microtubule-encircling ring that glides near the end of the dynamic microtubule to mediate chromosome motion. In recent years, we have learned a great deal about the structural properties of the Dam1 heterodecamer, its mechanism of self-assembly into rings, and its tethering to the kinetochore by the elongated Ndc80 complex. The most remarkable progress has resulted from defining the fine structures of helical bundles within Dam1 heterodecamer. In this review, we critically analyze structural observations collected by diverse approaches with the goal of obtaining a unified view of Dam1 ring architecture. A considerable consistency between different studies supports a coherent model of the circular core of the Dam1 ring. However, there are persistent uncertainties about the composition of ring protrusions and flexible extensions, as well as their roles in mediating ring core assembly and interactions with the Ndc80 complex and microtubule.

Publisher

Portland Press Ltd.

Subject

Molecular Biology,Biochemistry

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3