Dynamic profiling of mRNA turnover reveals gene-specific and system-wide regulation of mRNA decay

Author:

Munchel Sarah E.1,Shultzaberger Ryan K.1,Takizawa Naoki1,Weis Karsten1

Affiliation:

1. Department of Molecular and Cellular Biology and QB3, University of California, Berkeley, Berkeley, CA 94720

Abstract

RNA levels are determined by the rates of both transcription and decay, and a mechanistic understanding of the complex networks regulating gene expression requires methods that allow dynamic measurements of transcription and decay in living cells with minimal perturbation. Here, we describe a metabolic pulse-chase labeling protocol using 4-thiouracil combined with large-scale RNA sequencing to determine decay rates of all mRNAs in Saccharomyces cerevisiae. Profiling in various growth and stress conditions reveals that mRNA turnover is highly regulated both for specific groups of transcripts and at the system-wide level. For example, acute glucose starvation induces global mRNA stabilization but increases the degradation of all 132 detected ribosomal protein mRNAs. This effect is transient and can be mimicked by inhibiting the target-of-rapamycin kinase. Half-lives of mRNAs critical for galactose (GAL) metabolism are also highly sensitive to changes in carbon source. The fast reduction of GAL transcripts in glucose requires their dramatically enhanced turnover, highlighting the importance of mRNA decay in the control of gene expression. The approach described here provides a general platform for the global analysis of mRNA turnover and transcription and can be applied to dissect gene expression programs in a wide range of organisms and conditions.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3