Simultaneous estimation of gene regulatory network structure and RNA kinetics from single cell gene expression

Author:

Jackson Christopher AORCID,Beheler-Amass MaggieORCID,Tjärnberg AndreasORCID,Suresh InaORCID,Hickey Angela Shang-meiORCID,Bonneau RichardORCID,Gresham DavidORCID

Abstract

Cells respond to environmental and developmental stimuli by remodeling their transcriptomes through regulation of both mRNA transcription and mRNA decay. A central goal of biology is identifying the global set of regulatory relationships between factors that control mRNA production and degradation and their target transcripts and construct a predictive model of gene expression. Regulatory relationships are typically identified using transcriptome measurements and causal inference algorithms. RNA kinetic parameters are determined experimentally by employing run-on or metabolic labeling (e.g. 4-thiouracil) methods that allow transcription and decay rates to be separately measured. Here, we develop a deep learning model, trained with single-cell RNA-seq data, that both infers causal regulatory relationships and estimates RNA kinetic parameters. The resultingin silicomodel predicts future gene expression states and can be perturbed to simulate the effect of transcription factor changes.We acquired model training data by sequencing the transcriptomes of 175,000 individualSaccharomyces cerevisiaecells that were subject to an external perturbation and continuously sampled over a one hour period. The rate of change for each transcript was calculated on a per-cell basis to estimate RNA velocity. We then trained a deep learning model with transcriptome and RNA velocity data to calculate time-dependent estimates of mRNA production and decay rates. By separating RNA velocity into transcription and decay rates, we show that rapamycin treatment causes existing ribosomal protein transcripts to be rapidly destabilized, while production of new transcripts gradually slows over the course of an hour.The neural network framework we present is designed to explicitly model causal regulatory relationships between transcription factors and their genes, and shows superior performance to existing models on the basis of recovery of known regulatory relationships. We validated the predictive power of the model by perturbing transcription factorsin silicoand comparing transcriptome-wide effects with experimental data. Our study represents the first step in constructing a complete, predictive, biophysical model of gene expression regulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3