Affiliation:
1. Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
Abstract
We examined the role that lipid rafts play in regulating apical protein trafficking in polarized hepatic cells. Rafts are postulated to form in the trans-Golgi network where they recruit newly synthesized apical residents and mediate their direct transport to the apical plasma membrane. In hepatocytes, single transmembrane and glycolipid-anchored apical proteins take the “indirect” route. They are transported from the trans-Golgi to the basolateral plasma membrane where they are endocytosed and transcytosed to the apical surface. Do rafts sort hepatic apical proteins along this circuitous pathway? We took two approaches to answer this question. First, we determined the detergent solubility of selected apical proteins and where in the biosynthetic pathway insolubility was acquired. Second, we used pharmacological agents to deplete raft components and assessed their effects on basolateral-to-apical transcytosis. We found that cholesterol and glycosphingolipids are required for delivery from basolateral early endosomes to the subapical compartment. In contrast, fluid phase uptake and clathrin-mediated internalization of recycling receptors were only mildly impaired. Apical protein solubility did not correlate with raft depletion or impaired transcytosis, suggesting other factors contribute to apical protein insolubility. Examination of apical proteins in Fao cells also revealed that raft-dependent sorting does not require the polarized cell context.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献