The TOR Signal Transduction Cascade Controls Cellular Differentiation in Response to Nutrients

Author:

Cutler N. Shane1,Pan Xuewen1,Heitman Joseph1,Cardenas Maria E.1

Affiliation:

1. Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710

Abstract

Rapamycin binds and inhibits the Tor protein kinases, which function in a nutrient-sensing signal transduction pathway that has been conserved from the yeast Saccharomyces cerevisiaeto humans. In yeast cells, the Tor pathway has been implicated in regulating cellular responses to nutrients, including proliferation, translation, transcription, autophagy, and ribosome biogenesis. We report here that rapamycin inhibits pseudohyphal filamentous differentiation of S. cerevisiae in response to nitrogen limitation. Overexpression of Tap42, a protein phosphatase regulatory subunit, restored pseudohyphal growth in cells exposed to rapamycin. The tap42-11 mutation compromised pseudohyphal differentiation and rendered it resistant to rapamycin. Cells lacking the Tap42-regulated protein phosphatase Sit4 exhibited a pseudohyphal growth defect and were markedly hypersensitive to rapamycin. Mutations in other Tap42-regulated phosphatases had no effect on pseudohyphal differentiation. Our findings support a model in which pseudohyphal differentiation is controlled by a nutrient-sensing pathway involving the Tor protein kinases and the Tap42–Sit4 protein phosphatase. Activation of the MAP kinase or cAMP pathways, or mutation of the Sok2 repressor, restored filamentation in rapamycin treated cells, supporting models in which the Tor pathway acts in parallel with these known pathways. Filamentous differentiation of diverse fungi was also blocked by rapamycin, demonstrating that the Tor signaling cascade plays a conserved role in regulating filamentous differentiation in response to nutrients.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3