Candida albicans’inorganic phosphate transport and evolutionary adaptation to phosphate scarcity

Author:

Acosta-Zaldívar Maikel,Qi Wanjun,Mishra Abhishek,Roy Udita,King William R.ORCID,Patton-Vogt Jana,Anderson Matthew Z.ORCID,Köhler Julia R.ORCID

Abstract

AbstractPhosphorus is essential in all cells’ structural, metabolic and regulatory functions. For fungal cells that import inorganic phosphate (Pi) up a steep concentration gradient, surface Pi transporters are critical capacitators of growth. Fungi must deploy Pi transporters that enable optimal Pi uptake in pH and Pi concentration ranges prevalent in their environments. Single, triple and quadruple mutants were used to characterize the four Pi transporters we identified for the human fungal pathogenCandida albicans, which must adapt to alkaline conditions during invasion of the host bloodstream and deep organs. A high-affinity Pi transporter, Pho84, was most efficient across the widest pH range while another, Pho89, showed high-affinity characteristics only within one pH unit of neutral. Two low-affinity Pi transporters, Pho87 and Fgr2, were active only in acidic conditions. Only Pho84 among the Pi transporters was clearly required in previously identified Pi-related functions including Target of Rapamycin Complex 1 signaling and hyphal growth. We used in vitro evolution and whole genome sequencing as an unbiased forward genetic approach to probe adaptation to prolonged Pi scarcity of two quadruple mutant lineages lacking all 4 Pi transporters. Lineage-specific genomic changes corresponded to divergent success of the two lineages in fitness recovery during Pi limitation. In this process, initial, large-scale genomic alterations like aneuploidies and loss of heterozygosity were eventually lost as populations presumably gained small-scale mutations. Severity of some phenotypes linked to Pi starvation, like cell wall stress hypersensitivity, decreased in parallel to evolving populations’ fitness recovery in Pi scarcity, while that of others like membrane stress responses diverged from these fitness phenotypes.C. albicanstherefore has diverse options to reconfigure Pi management during prolonged scarcity. Since Pi homeostasis differs substantially between fungi and humans, adaptive processes to Pi deprivation may harbor small-molecule targets that impact fungal growth and virulence.Author SummaryFungi must be able to access enough phosphate in order to invade the human body. Virulence ofCandida albicans, the most common invasive human fungal pathogen, is known to decrease when one of the proteins that brings phosphate into the fungal cell, called Pho84, is disabled. We identified three more proteins inC. albicansthat transport phosphate into the cell. We found that Pho84 plays the largest role among them across the broadest range of environmental conditions. After eliminating all 4 of these transporters, we let two resulting mutants evolve for two months in limited phosphate and analyzed the growth and stress resistance of the resulting populations. We analyzed genomes of representative populations and found that early adaptations to phosphate scarcity occurred together with major changes to chromosome configurations. In later stages of the adaptation process, these large-scale changes disappeared as populations presumably gained small-scale mutations that increased cells’ ability to grow in limited phosphate. Some but not all of these favorable mutations improved resistance of evolving populations to stressors like membrane- and cell wall stress. Pinpointing distinct mutation combinations that affect stress resistance differently in populations adapting to scarce phosphate, may identify useful antifungal drug targets.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3