Identification of a cell retention signal in the B-chain of platelet-derived growth factor and in the long splice version of the A-chain.

Author:

Ostman A1,Andersson M1,Betsholtz C1,Westermark B1,Heldin C H1

Affiliation:

1. Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden.

Abstract

The B-chain homodimer of platelet-derived growth factor (PDGF) is only very inefficiently secreted and remains largely associated with the producer cell; in contrast, the dimer of the short, and most common, splice variant of the A-chain is secreted. To identify the structural background to the differences in the secretory pattern between the different isoforms of PDGF, a set of chimeric PDGF A/B cDNAs was generated and expressed in COS cells. Analyses of the biosynthesis and processing of the corresponding products led to the identification of a determinant for cell association in the carboxy-terminal third of the PDGF B-chain precursor. Introduction of stop codons at various positions in the carboxy-terminal prosequence of the PDGF B-chain localized this determinant to an 11-amino-acid-long region (amino acids 219-229). This region contains an 8-amino-acid-long basic sequence that is homologous to a sequence present in an alternatively spliced longer version of the PDGF A-chain. In contrast to the short splice variant, the long splice A-chain version, like the B-chain, was found to remain predominantly cell associated. Thus, we have identified a conserved sequence that inhibits the secretion of some of the PDGF isoforms. Our data also suggest that switching of splicing patterns can be a mechanism to regulate the formation of secreted or cell-associated forms of PDGF-AA and possibly other growth factors.

Publisher

American Society for Cell Biology (ASCB)

Subject

General Medicine

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3