RGS5: a novel role as a hypoxia-responsive protein that suppresses chemokinetic and chemotactic migration in brain pericytes

Author:

Enström Andreas12ORCID,Carlsson Robert12ORCID,Özen Ilknur12ORCID,Paul Gesine1234ORCID

Affiliation:

1. Translational Neurology Group 1 , Department of Clinical Science , , Lund 221 84 , Sweden

2. Lund University 1 , Department of Clinical Science , , Lund 221 84 , Sweden

3. Scania University Hospital 2 Department of Neurology , , Lund 221 85 , Sweden

4. Wallenberg Centre for Molecular Medicine, Lund University 3 , Lund 221 84 , Sweden

Abstract

ABSTRACT Adaptive biological mechanisms to hypoxia are crucial to maintain oxygen homeostasis, especially in the brain. Pericytes, cells uniquely positioned at the blood-brain interface, respond fast to hypoxia by expressing regulator of G-protein signalling 5 (RGS5), a negative regulator of G-protein-coupled receptors. RGS5 expression in pericytes is observed in pathological hypoxic environments (e.g. tumours and ischaemic stroke) and associated with perivascular depletion of pericytes and vessel leakage. However, the regulation of RGS5 expression and its functional role in pericytes are not known. We demonstrate that RGS5 acts as a hypoxia-responsive protein in human brain pericytes that is regulated independent of hypoxia inducible factor-1α (HIF-1α), rapidly stabilized under hypoxia, but degraded under normoxic conditions. We show that RGS5 expression desensitizes pericytes to signalling of platelet-derived growth factor-BB (PDGFBB) and sphingosine 1-phosphate (S1P), and blocks chemokinesis or chemotaxis induced by these factors. Our data imply a role for RGS5 in antagonizing pericyte recruitment and retention to blood vessels during hypoxia and support RGS5 as a target in counteracting vessel leakage under pathological hypoxic conditions. This article has an associated First Person interview with the first author of the paper.

Funder

Vetenskapsrådet

Hjärnfonden

Cancerfonden

Lunds Universitet

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3